Office (Bureau) : M2-110

GPG Public Key


Hi! You may have noticed the new URL and the new design. Now everything (my home page + my blog) is in one place, powered by Hugo and its Academic theme. I was a bit fed up with Jekyll and its long building times, and I wanted something a bit more streamlined. The Academic theme is complete and easy to use; it took me about one hour to setup the new blog, and one hour to migrate the blog posts to the new format (most of which was spent trying to work out the interactions between Mathjax and the Markdown format… I settled on shortcodes, like in this article). Building a whole website from scratch was fun, but time-consuming, and a theme seemed like an okay compromise.


Last week I was at the Max Planck Institute for the Conference for Young researchers in homotopy theory and categorical structures (which was, by the way, a great conference – thanks to the organizers), and I gave yet another talk about the Lambrechts–Stanley model for configuration spaces. So maybe it’s time I write a little bit about it on this blog. I’ll write a first post about the model itself, and later I will explain how the Fulton–MacPherson operad is involved in all this.


I’ve been neglecting this blog a lot. Juggling research, teaching, organizing a seminar, and a personal life leaves little time for writing articles! (Wait, isn’t that the same complaint as last time?)

Most prominently I’ve been spending a lot of time working on my paper about the Lambrechts–Stanley model for configuration spaces (see my previous post). The good news is, I’m done (or as done as one can be with a paper). I’ve just uploaded the third version of the paper on the arXiv (also available on my lab webpage), and I’ve submitted it. I’ve finally managed to remove this bothersome hypothesis about the Euler characteristic of the manifold, and I’ve fixed an issue about my use of the propagator (PA forms are hard). The new abstract is:


My first real post in a while! It turns out that writing an actual paper (cf. previous blog post) takes a lot of time and effort. Who knew?

The Voronov product of operads is an operation introduced by Voronov in his paper The Swiss-cheese operad (he just called it “the product”). It combines an operad and a multiplicative operad to yield a new colored operad; the main example I know is the homology of the Swiss-cheese operad. This is a construction that I use in my preprint Swiss-Cheese operad and Drinfeld center, where as far as I know I coined the name “Voronov product” – I haven’t seen this operation at all outside of Voronov’s paper. I wanted to advertise it a bit because I find it quite interesting and I’m eager to see what people can do with it.